Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints
نویسندگان
چکیده
This work presents PESMOC, Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints, an information-based strategy for the simultaneous optimization of multiple expensive-to-evaluate black-box functions under the presence of several constraints. PESMOC can hence be used to solve a wide range of optimization problems. Iteratively, PESMOC chooses an input location on which to evaluate the objective functions and the constraints so as to maximally reduce the entropy of the Pareto set of the corresponding optimization problem. The constraints considered in PESMOC are assumed to have similar properties to those of the objective functions in typical Bayesian optimization problems. That is, they do not have a known expression (which prevents gradient computation), their evaluation is considered to be very expensive, and the resulting observations may be corrupted by noise. These constraints arise in a plethora of expensive black-box optimization problems. We carry out synthetic experiments to illustrate the effectiveness of PESMOC, where we sample both the objectives and the constraints from a Gaussian process prior. The results obtained show that PESMOC is able to provide better recommendations with a smaller number of evaluations than a strategy based on random search.
منابع مشابه
Predictive Entropy Search for Bayesian Optimization with Unknown Constraints
Unknown constraints arise in many types of expensive black-box optimization problems. Several methods have been proposed recently for performing Bayesian optimization with constraints, based on the expected improvement (EI) heuristic. However, EI can lead to pathologies when used with constraints. For example, in the case of decoupled constraints—i.e., when one can independently evaluate the ob...
متن کاملLookahead Bayesian Optimization with Inequality Constraints
We consider the task of optimizing an objective function subject to inequality constraints when both the objective and the constraints are expensive to evaluate. Bayesian optimization (BO) is a popular way to tackle optimization problems with expensive objective function evaluations, but has mostly been applied to unconstrained problems. Several BO approaches have been proposed to address expen...
متن کاملPredictive Entropy Search for Multi-objective Bayesian Optimization
We present PESMO, a Bayesian method for identifying the Pareto set of multi-objective optimization problems, when the functions are expensive to evaluate. The central idea of PESMO is to choose evaluation points so as to maximally reduce the entropy of the posterior distribution over the Pareto set. Critically, the PESMO multi-objective acquisition function can be decomposed as a sum of objecti...
متن کاملDYNAMIC PERFORMANCE OPTIMIZATION OF TRUSS STRUCTURES BASED ON AN IMPROVED MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER
This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tab...
متن کاملA General Framework for Constrained Bayesian Optimization using Information-based Search
We present an information-theoretic framework for solving global black-box optimization problems that also have black-box constraints. Of particular interest to us is to efficiently solve problems with decoupled constraints, in which subsets of the objective and constraint functions may be evaluated independently. For example, when the objective is evaluated on a CPU and the constraints are eva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016